#Creating Fake Data Sets To Explore Hypotheses
spema <- sample(26:80,20, replace = TRUE)
spele <- sample(24:30,20, replace = TRUE)
data <- data.frame(spema, spele)
rep(spema)
## [1] 57 41 74 46 55 67 53 71 79 37 61 76 61 56 31 64 34 72 52 26
rep(spele)
## [1] 30 24 26 27 25 28 24 30 25 27 30 27 30 29 30 29 29 28 24 28
#spema follows the random distribution of species 1 skull size
# The lowest skull size is 26 while the highest it can be is 80. There are 20 specimens
#spele follows the random distribution of species 2 skull size
# The lowest skull size is 10 while the highest it can be is 32. There are 20 specimens
###ANOVA TEST
ANOVA_HM2 <- aov(spema~spele, data = data)
summary(ANOVA_HM2)
## Df Sum Sq Mean Sq F value Pr(>F)
## spele 1 5 4.62 0.018 0.895
## Residuals 18 4684 260.22
# here is the code that assigns the anova test to the variable ANOVA_HM2
###For Loop Function
m <- c(80,85,90,95,100)
for (i in 1:length(m)) {
spema <- sample(26:m[i],200, replace = TRUE)
spele <- sample(10:32, 200, replace = TRUE)
ANOVA_HM2 <- aov(spema~spele)
x <- summary(ANOVA_HM2)
print(m[i])
print(x[[1]]$`Pr(>F)`)
}
## [1] 80
## [1] 0.9964014 NA
## [1] 85
## [1] 0.9296422 NA
## [1] 90
## [1] 0.9251462 NA
## [1] 95
## [1] 0.2819063 NA
## [1] 100
## [1] 0.5363729 NA
# m is used to store the loops of the increasing value
# The for loop stars with the length of m, every time it loops the value of my spema's higher end is increased by 5 mm every loop.
# After the loop is calculated the value that is changed is printed followed by the anova test value. This loop continues until it hits the final length of m